

# **BALLOON POWERED CAR**

Grade Level: 4th

**Duration: 2-3 Class Periods** 

# **PROJECT DESCRIPTION**

In this hands-on STEM project, students design and build balloon-powered cars, exploring motion, forces, and energy. Students learn about Newton's third law, forces, and energy principles. Following the 5E's, TN K-5 STEM Standards Framework, and the Engineering Design Process.

#### **STEM & ACADEMIC CONCEPTS**



SCIENCE



READING



**ENGINEERING** 



**MATH** 



**WRITING** 

#### **OBJECTIVES**

- Students will explore the concept of motion and energy by designing and building a balloon-powered car.
- Students will apply their knowledge of forces and motion to construct a working model of a car that is propelled by the force of air escaping from a balloon.
- Students will engage in the scientific process, including planning, designing, testing, and evaluating their car prototypes.

#### **MATERIALS**

- Balloons (assorted sizes)
- Straws
- Cardboard
- Wooden skewers
- Tape
- Scissors
- Rubber bands
- Paper clips
- Markers

#### **STANDARDS**



#### **SCIENCE**

 4-PS3-1: Plan and conduct an investigation to determine the relationships between the properties of materials (e.g., strength, solubility, transparency, odor, texture, etc.) and how they interact with the environment.



#### **READING**

• RST4-5: Use a variety of texts and other information sources to answer questions about the natural world.



#### **ENGINEERING**

• 4.PS3.2 Observe and explain the relationship between potential energy and kinetic energy



#### % MATH

- o4-PS3-2: Design a solution to a real-world problem by conducting an investigation and using models.
- 4-PS3-4: Communicate scientific ideas and findings by creating a presentation of findings and supporting evidence.



#### WRITING

• 4.W.1.1: Write informative/explanatory texts to examine a topic and convey ideas and information clearly.



#### **VOCABULARY**

- <u>Force</u>: Force is a push or pull that can change the motion of an object. When you push a door open, you are applying a force to it. The door will move in the direction of the force.
- <u>Kinetic energy</u>: Energy that makes things move! Imagine you're playing with a toy car. The faster you push it, the more energy it must zoom around.
- Motion: Motion is the change in position of an object over time. For example, a ball rolling across the floor, moving from one point to another.
- <u>Potential energy</u>: Potential energy is like a hidden power inside objects. It's
  the energy something has because of where it is or how it's set up. For
  example, when you hold a ball up high, it has the potential to fall and hit the
  ground.
- Thrust: Thrust is the force that gives things a big push forward. Just like how a balloon-powered car moves when the air rushes out of the balloon, pushing it in the right.

# BALLOON POWERED CAR ENGINEERING-MATH





### **Engage (Duration: 15 minutes)**

- Begin by asking students if they have ever seen or played with a toy car that moves without batteries or being pushed.
- Show them a <u>video</u> or pictures of a balloon-powered car in action.
- Ask students to share their observations and thoughts about how they think the car works.
- Facilitate a brief class discussion on the concepts of motion, forces, and energy.



Reflection Exercise: Write a paragraph about what you already know or think you know about how a balloon-powered car moves.



## **Explore (Duration: 30 minutes)**

- Divide students into small groups.
- Distribute the materials to each group.
- Instruct students to brainstorm and sketch their ideas for designing a balloon-powered car.
- Encourage students to discuss and consider the materials' properties and how they can be utilized to create a functional car.
- Once the designs are finalized, provide time for students to build their cars following their plans.



Reflection Exercise: Write a paragraph describing your group's design for the balloon-powered car. Explain why you chose the specific materials and how you think it will work.





- Gather the students together and invite each group to present their car designs.
- Discuss the basic principles of motion, forces, and energy transfer involved in a balloon-powered car.
- Explain how the air escaping from the balloon propels the car forward by exerting a force in the opposite direction (Newton's third law of motion).



Reflection Exercise: Write a paragraph explaining how the air escaping from the balloon propels the car forward, based on what you learned during the explanation.



### Elaborate (Duration: 40 minutes)

- Instruct each group to test their car prototypes by attaching a balloon to the car and releasing the air.
- Students should measure the distance their cars travel and record the results.
- Encourage students to make modifications to their designs to improve the distance traveled or stability.
- Allow time for multiple test runs and adjustments.



Reflection Exercise: Write a paragraph reflecting on the test results of your balloon-powered car. What changes did you make? Did it affect the performance? Why or why not?







## Evaluate (Duration: 15 minutes)

- Regroup students and facilitate a class discussion about the challenges, successes, and failures encountered during the activity.
- Ask students to reflect on what they learned about motion, forces, and energy transfer through this hands-on experience.
- Provide an opportunity for students to share their observations, ask questions, and discuss their future ideas for improving their designs.



Reflection Exercise: Complete "Check for Understanding" Worksheet



Conclusion: The balloon-powered car lesson plan engages students in an exciting and interactive exploration of motion, force, and energy.

# BALLOON POWERED CAR CHECK FOR UNDERSTANDING



NAME:

| 1. Which type of force is used to push the balloon powered car forward?                                 |
|---------------------------------------------------------------------------------------------------------|
| 2. What is the difference between force and motion?                                                     |
| 3. How can kinetic energy and potential energy be used to explain the motion of the balloo powered car? |
| 4. What could you do differently next time to make your car go faster (or go at all!)?                  |